
The results obtained here - particularly those concerning the possibility of the forma- 
tion of particle aggregates in a nonisothermal aerosol - may prove useful in performing spe- 
cific calculations related to the dynamics of such systems. The results might also be used 
in the design and development of devices for removing aerosol particles from air. 
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THERMOCAPILLARY CONVECTION WITH TEMPERATURE-DEPENDENT HEAT RELEASE 

AT AN INTERFACE 

A. Yu. Gilev, A. A. Nepomnyashchii, and I. B. Simanovskii UDC 536.25 

It is known that thermocapillary instability in a system with an interface can be either 
monotonic or oscillatory in character [1-4]. The stability of the equilibrium state of the 
system is significantly influenced by presence of heat sources and sinks on the interface 
due to chemical reaction, evaporation, absorption of radiation, etc. The study [5] solved 
the problem of stability of equilibrium in a two-layer system against mononotonic perturba- 
tions under conditions of surface heat release. Nepomnyashchii and Simanovskii [6] examined 
the stability of a two-layer system against monotonic and oscillatory perturbations in the 
presence of temperature-independent heat release at the interface. 

In the present investigation, we solve the same problem with allowance for the tempera- 
ture dependence of surface heat release. It is shown that in certain cases this dependence 
can lead to expansion of the region associated with oscillatory instability. 

i. Let the space between two solid horizontal plates y = a I and y = -a 2, kept at con- 
stant temperatures T l and T z, be filled by two layers of viscous immiscible fluids. The x- 
axis is directed horizontally, while the y axis is directed vertically upward. We assume 
that thermocapillary convection occurs in the presence of gravity, which in turn allows us 
to consider the interface to be planar and nondeformable (y = 0). Despite this, the effect 
of buoyancy on convection is assumed to be negligible compared to the thermocapillary effect - 
as is seen for thin films of liquid. The absolute and kinematic viscosities, thermal con- 
ductivities, and diffusivities are equal to ~m, ~m, <m, Xm (m = 1 for the top fluid and m = 
2 for the bottom fluid). Surface tension is linearly dependent on temperature: o = o0 - aT. 

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 115-119, May-June, 1991. Original article submitted April 5, 1989; revision sub- 

mitted January 26, 1990. 
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We will assume that the quantity of heat QF, determined by the temperature of the inter- 
face To, is released at the boundary between the media (such heat release occurs, for exam- 
ple, in the case of a heterogeneous chemical reaction). Figure 1 (line 4) shows a typical 
dependence of heat release on temperature (with a heterogeneous chemical reaction). For con- 
ditions of mechanical equilibrium, Q0 and the vertical temperature gradients A m (m = i, 2) 
are calculated from the heat-balance condition -<zA1 + K2A 2 = Q0 (the quantity of heat gen- 
erated at the interface between the fluids must be equal to the quantity of heat removed to 
the solid boundaries of the system) and the relation A1a I + A2a 2 = -s8 (s = 1 with heating 
from below, s = -i with heating from above); 8 = ITI - T21. We find that A l = --(SSK 2 + 
Q0a2)/(alK 2 + a2Kl), A 2 = -(sSK I - Q0al)/(aiK 2 + a2< 1 . The equilibrium values of the temper- 
ature of the boundary T o and heat release Q0 are determined from the system of equations 

To=Tl•215 ( l .  l) 
alz2~l-a2zl 

Qo = Qr( To). (1.2) 

Figure 1 shows different possibilities for the mutual location of the graphs of Eq. 
(i.i) (lines I-3) and (1.2) (line 4). It is clear that the system can have two solutions 
(if the thermal conductivity of the medium is great enough), one solution (in the critical 
case), or no solutions (if not enough heat is removed). We will henceforth assume that 
there is but one solution to system (1.1)-(1.2). 

We introduce the following notation: D = ql/n2, v = vl/v2, < = <I/K2, X = Xz/X2, a = 
a2/a I. We choose al, az2/vz, vl, and @ as the units of length, time, the stream function, 
and temperature, respectively. Under equilibrium conditions, the dimensionless temperature 
gradient is equal to A I = -(s + QaK)/(l + <a) in the top fluid and A 2 = -K(s - Q)/(I + Ka) 
in the bottom fluid, where Q = Q0al/@Kl. 

We impose perturbations of the stream function ~m' and temperature T m' on the equilib- 
rium state: 

t r t 

(r r~, ~, r~) = ( ,~ (v), r~ (y), ~ (v), r~ (V)) e~p [~k~ - -  (~ + ~ )  t] 

(k is the wave number; I + iw is the complex decrement). 

The linearized equations for the perturbations of the stream function and temperature 
have the form [4] 

(L + ico)D*m = --dmD2*m, 

--0~ + Ro)T,~ - -  ik*.',~Am = (em/Pr)DT,~, (1.3) 

where D = d2/dy 2 - k2: bl = el = i; d 2 = l/v; e 2 = l/x; Pr = vl/Xz is the Prandtl number. 

Using a prime to denote differentiation with respect to y, we write the conditions for 
the solid boundaries 

t r 

y = l :  # 1 = ' 1 = T I = 0 ,  y = - - a :  ~ = ~ 2 = T  2 = 0  (1.4) 
and for the interface 
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t t t 

y = 0:~1 = % = 0, ~t = ~P2, T1 ='T2, xT1 = Ts - -  QTT1, 
tr  u 

q~l  - -  ik Mr T,  = g'2, Mr = aOar"(q~vl), Or  = (dOr/dTo) at• 1. 
(1.5) 

The boundary of the stable state is determined by the condition ~ = 0. In the approximation 
being examined, the terms ikGbmT m - which describe buoyancy (where G = g~l@al3/Vl 2 is the 
Grashof number, b I = i, b 2 = ~2/~i, ~m is the coefficient of thermal expansion of the m-th 
fluid) - are dropped from the equations for the perturbations of the stream function [7]. 
If the densities and coefficients of thermal expansion of the two media are close enough to 
one another, then the validity of the given approximation can be evaluated by using the cri- 
terion established for convection in a one-layer system [8]: 

am<<ac, a ~  m i n  (~/gpm~m) 1/2. (1.6) 
m 

It is convenient to introduce the parameter MrQ = MrQ = a Q o a l 2 / ( q 2 v l < l )  to analyze the 
effect of surface heat release on the onset of thermocapillary instability. In contrast to 
Q, this parameter is independent of 0 and remains constant with a change in the difference 
in temperature between the top and bottom boundaries of the system. Different values of 
MrQ correspond to different rates of heat release at the interface. 

2. Boundary-value problem (1.1)-(1.5) for monotonic instability (~ = ~ = 0) can be 
solved analytically [5]. The expression for the critical value of MrQ has the form 

MrQ = s Mr (%C 2 --  C1) --  8 (l + • (• Pr) - 1  k [k (xD 1 + D2) -- QT] ('1 B, + B~) 

xC~ + • 1 " (2.1) 

Here 

B~ = (s~ca --  k)/(s~ - -  k2); B 2 = (s2Q --  ka)/(s~ - -  k'~a2); 

D~ = cjs~; D2 = cJs2; s~ = sh k; s~ ---- sh ka; c~ ---- ch k; c2 = ch ka. 

The equilibrium is stable at MrQ > MrQ,, where MrQ, = max MrQ(k). This means that heat re- 
lease has a stabilizing effect on the equilibrium state, while heat absorption has a desta- 
bilizing effect [5, 6]. It is evident from Eq. (2.1) that an increase in QT leads to an in- 
crease in MrQ(k) (destabilization) and that a decrease in QT leads to a decrease in MrQ(k) 
(stabilization). 

In fact, the formulation of the problem of the onset of thermocapillary convection has 
significance only for the region 

QT < QT, = • + t/a, ( 2 . 2 )  

where the neutral curve (2.1) has an extremum. It is not hard to see that condition (2.2) 
is satisfied for equilibrium - which corresponds to point A in Fig. 1 - and is not satisfied 
for point B. The equality QT = QT, is valid for point C. In the region QT > QT, for any val- 
ue of Mr, the equilibrium state is unstable against spatially uniform (k = 0) and long-wave 
(small k) perturbations due to the phenomenon of thermal shock [5]. 

Let us examine the special case X = i, a = I. In the absence of heat sources and sinks, 
monotonic instability is not seen for this case. In the presence of heat absorption, the 
monotonic neutral curve has the form 

MrQ (k) 8( t  + n )  (t + ~) ~ [k (• + 1) q - -  Qrq] ( q q  - -k )  
= -- (2.3) 

• Pr (,~ - -  kacl) 

and is independent of the parameter Mr. 

To obtain the boundaries of the region associated with oscillatory instability, we need 
to solve the problem numerically. We will examine a system with the parameters n = 9 = 0.5, 
< = X = Pr = a = i. We will limit ourselves to the case of heating from below. Monotonic 
instability is realized at MrQ < MrQ, < 0, where MrQ, is the extremum of Eq. (2.3). At 
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MrQ > MrQ,, oscillatory instability is the only possible mechanism of destabilization of the 
equilibrium state. Figure 2 shows the neutral curves for Q = -0.02; QT = 0 (lines i, 2), 
-0.5 (3, 4), -i.I (5, 6), -2.4 (line 7). Here and below, the monotonic neutral curves are 
shown by solid lines, while the oscillatory curves are shown by dashed lines. The neutral 
curves in Fig. 3 were constructed for Q = -0.03; QT = 0 (lines i, 2), -0.5 (3, 4), -I.i (5, 
6), -2.4 (7, 8). It is evident from Figs. 2 and 3 that both the monotonic and oscillatory 
modes of instability become more stable with an increase in the parameter IQTI (QT < 0). 
Figure 4 shows the boundaries of the stability region obtained by determining the extrema of 
the neutral curves for monotonic and oscillatory perturbations [QT = 0 (lines i, 21), -2.4 
(3, 4)]. With an increase in IQTI, the region of oscillatory instability expands due to the 
reduction in the value of MrQ, corresponding to the threshold of monotonic instability. 

Now let us examine a system of real fluids composed of transformer oil and formic acid. 
The system is characterized by the following set of physical parameters: ql = 0.0198 N'sec/ 
m2, vl = 0.225"10-4 m2/sec, ~i = 0.iii W/(m'K), Xi = 0.736"10-7 m2/s ec, q2 = 0-178"10-2 N" 
sec/m2, v2 = 0.146"10-4 m2/sec, ~2 = 0.271 W/(m'K), X2 = 1-03'10"7 m2/sec, 61 = 0.692"10-3 
l/K, 62 = 1.03"10-3 I/K. The dimensionless parameters for this system are equal to: q = 
ii.i, v = 15.4, K = 0.41, X = 0.714, Pr = 306. It should be noted that, according to (1.6), 
the thicknesses of the layers for which the given approximation is invalid are a c .̂ 4 mm [we 
assume that ~ ~ 0.1.10 -3 N/(m'K)]. Let us discuss the case a = 1.667. The thermal-shock 
threshold for this system is reached at QT = QT, = 1.01. Figure 5 shows the boundaries of 
the regions in which the system is stable against monotonic and oscillatory perturbations 
for QT = 0 (lines I, 2) and 1.01 (3, 4); the corresponding type of instability is realized 
in the region to the left of the boundaries shown in the figure. It is evident that an in- 
crease in QT leads to destabilization of equilibrium in relation to both modes of instabil- 
ity, although monotonic instability remains the greater danger. At QT > QT,, the equilibrium 
state is unstable relative to monotonically increasing long-wave perturbations for any sMr, 
MrQ. Figure 6 shows the change in the form of the neutral curves at Q = 0.03 [QT = 0 (lines 
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1-3), i.i (4-6), 2.4 (7-9), 3.6 (10-12 , 4.8 (13, 14)] and the dependence of the frequency 
of oscillation on the wave number at QT = 0; i.]; 2.4; 3.6 (lines 1-4) in the thermal-shock 
region. Long-wave disturbances (k + 0) always increase in this region. For finite k and 
sufficiently small QT, the region in which the perturbations decay is complicated in form. 
For sufficiently large QT, the oscillatory mode of instability disappears and the region of 
decay of the perturbations takes the form k > k,; with an increase in Mr, the boundary wave 
number k, decreases at s > 0 (heating from below) and increases at s < 0 (heating from above). 

Thus, the dependence of surface heat release on temperature has a significant effect on 
monotonic and oscillatory modes of thermocapillary instability. Here, an increase in heat 
release with an increase in temperature (QT > 0) has a destabilizing effect, whi]e a decrease 
(QT < 0) has a stabilizing effect. 
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